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Abstract—Lithium ion batteries are complex. Their safe
and effective exploitation requires advanced Battery Man-
agement systems (BMS). This paper proposes a computa-
tionally efficient, control-oriented model of a Li-ion cell. The
model describes the spatial nature of both the chemical
species and temperature dynamics in a computationally
efficient way. The method takes advantage of the algebraic
structure that arises from the distributed nature of the
model. We show that by discretizing the model PDE’s with
a finite difference method, the coupling equations take a
Semi Separable Structure for which an efficient algebra
exists. This approach yields an efficient modeling tool that
can be employed for BMS design. The proposed model is
validated against a high order CFD model.

I. INTRODUCTION

Li-ion batteries are chemically unstable, and require Bat-

tery Management Systems (BMS’s). The BMS continuously

monitors and controls the battery states, such as: temperature,

current, voltage, amount of remaining energy, and battery

degradation.

It is known [1], [2] that BMS based on averaged cell

models do not allow for full exploitation of the cell potential.

More precisely, internal lithium concentration distribution is a

crucial information to effectively avoid reaching locally critical

depletion levels (and therefore damaging the battery). Similar

considerations apply to the cell temperature [3], if one only

monitors the surface temperature [4], [5], which is the only

thermal state that is directly measurable, a thermal runaway [6]

may not be promptly detected. The more accurate the model

on which the BMS operates, the more effectively the cell can

be used.

Several models of Li-ion batteries exist. They are classified

according to their complexity and accuracy (see for example

[7]). The simplest models are the equivalent circuit models

(ECM’s) [8]–[10], or gray-box models. They describe the

cells dynamics with minimum computational cost by means of

elementary electric circuits with voltage sources, resistors and

capacitors. ECM’s are easy to understand for systems engi-

neers and are highly scalable. However, ECM’s are sufficiently

accurate only for relatively low and constant currents; they

fail to describe the cell dynamics for medium-high dynamic
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currents; furthermore they offer no physical insight in the

electrochemical phenomena taking place inside the cell.

First-principle electrochemical models, or white-box models

overcome these limitations. Different first-principle modeling

approaches exist: from the Single Particle Model (SPM) to

advanced Computational Fluid Dynamics (CFD) models [11],

that describe physical phenomena with extreme accuracy, but

at the price of high computational burden and a high number

of electrochemical parameters to be identified.

The Pseudo 2-Dimensional (P2D) electrochemical model,

originally proposed in [12], [13] and adopted in works such

as [14]–[17], is widely recognized as a valuable trade-off

between detailed modeling and computational cost. It assumes

spherical active material particles and it considers only two

dimensions: the radial dimension, r, and the cell film thick-

ness, named x. The P2D model, relying on Partial Differential

Algebraic Equations (PDAEs), requires particular care in the

implementation. Several methods are available in literature to

find approximated and/or reduced-order solutions [18], [18]–

[20].

The original formulation of the P2D model does not account

for thermal dynamics. A number of thermal models have been

developed for Li-ion cells [21]. A family of approaches uses

lumped thermal models [3], [22], where the temperature gradi-

ent is neglected. This approach is based on the hypothesis that

the heat generation is uniform. This hypothesis breaks under

high discharge rate [23]. Many models are not bidirectionally

coupled, in the sense that the electrochemical process influence

the heat generation, but the cell temperature does not impact

the electrochemical reactions. This drawback is overcome in

[24] and [25] where the classical P2D model of a cylindrical

cell is coupled with a lumped thermal model, making the

physiochemical properties of the cell temperature dependent.

Finally, there are works where the coupled electrochemical

thermal model is solved through computational fluid dynamics,

as in [11], or finite element solvers as in [26]. These methods

are not suited for real-time applications and do not provide a

model that is mathematically manipulable for BMS design.

In this article, that extend the work presented in [27], we

present a new formulation of the P2D model for a cylindrical

cell. We focus on two main contributions.

• we augment the standard P2D model with thermal dy-

namics. The proposed coupling is bi-directional and spa-

tially distributed. The thermal model assumes that the

temperature gradient along the cylinder axial direction
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Fig. 1. Layout of a cylindrical Li-ion cell

is negligible and that the heat generation mechanisms

depend on the local value of the electrochemical states.

• We propose an efficient integration scheme. We recast

the nonlinear equations of the P2D model in a distributed

framework. This, with minor approximations, determines

the rise of specific algebraic structure, the Semi Sepa-

rable Structure (SSS) [28]. The SSS defines an efficient

algebra that yields a linear complexity with respect to the

dimensionality. This approach also yields a closed form

cell model that can be directly used for estimation and

control system design as the variables retain their original

physical meaning.

The paper is structured as follows. Section II recalls the

continuous time partial differential equations that determine

both the electrochemical and thermal dynamics. Section III

presents the discretization approach and the coupling between

the thermal and electrochemical parts. Section IV introduces

the computationally efficient framework based on the Semi

Separable Structure. Section V analyzes the model from the

dynamic and computational effort stand points.

II. LITHIUM ION CELL MODELING

We refer to the standard P2D model which considers only

the diffusion dynamics that take place across the battery film

thickness, x, and the diffusion dynamics inside the spherical

particles, along the radial direction r (see Figure 1). The

dynamics of interest can be divided into the electrochemical

dynamics and the thermal dynamics.

A. Electrochemical Dynamics

The electrochemical reactions are described by three types

of equations: mass balance, charge balance and kinetics equa-

tions. In our notation, t represents the time, x the spatial

coordinate along the x-direction and r the spatial coordinate

along the radius of the active material sphere. ce(t, x) rep-

resents the Li+ concentration in the electrolyte, cs(t, r, x) the

concentration of Li in the solid phase; φs(x, t) and φe(x, t) are

respectively the potential in the solid and electrolyte phases.

Mass balances: These equations describe the conservation

of Li in the solid phase (with reaction current jLi from the

surface)

∂cs

∂t
=

Ds

r2
−→
∇r

(
r2
−→
∇rcs

)
(1)

with boundary conditions:

−→
∇rcs

∣∣∣
r=0

= 0; Ds

−→
∇rcs

∣∣∣
r=Rs

=
−jLi

asF
(2)

where Ds is the solid phase diffusion coefficient, F is the

Faraday’s constant, and as is the specific area of an electrode.

The second mass balance is the conservation of Li in the

electrolyte

∂ǫece

∂t
=

−→
∇x

(
Deff

e

−→
∇xce

)
+

1− t0+
F

jLi. (3)

Deff
e is the effective diffusion coefficient, t0+ is the transfer-

ence number of Li+ with respect to the velocity of solvent

(assumed to be constant). The boundary conditions are,

−→
∇xce

∣∣∣
x=0

=
−→
∇xce

∣∣∣
x=L

= 0. (4)

Charge balances: The current flowing per unit area in the

solid phase, is, is given by Ohm’s law

is (x) = −σeff−→∇xφs (5)

where σeff is the effective conductivity. At each spherical

particle, the current gets diverged due to the reaction taking

place between the electrode and the electrolyte. This current

is in the form of flow of Li+ and depends on the volumetric

rate of electrochemical reaction jLi as,

−→
∇xis (x) = −jLi; (6)

this current adds to the electrolyte current given by,

−→
∇xie (x) = jLi. (7)

ie follows a modified Ohm’s law which accounts for concen-

tration variations,

ie (x) = −κeff−→∇xφe − κ
eff
D

−→
∇xln ce , (8)

here κeff is the effective ionic conductivity, κ
eff
D is the

effective diffusion conductivity. The boundary conditions of

the charge balances are: (1) the battery terminal current is the

to solid phase current only

−σ
eff
−

−→
∇xφs

∣∣∣
x=0

= σ
eff
+

−→
∇xφs

∣∣∣
x=L

=
I

A
(9)

−→
∇xφe

∣∣∣
x=0

=
−→
∇xφe

∣∣∣
x=L

= 0 (10)

(2) zero solid current in the separator:

−→
∇xφs

∣∣∣
x=δ

−

=
−→
∇xφs

∣∣∣
x=δ

−
+δsep

= 0. (11)

Further, there is no divergence of current within the separator

and the entire terminal current flows through the separator in

the form of Li+,
−→
∇xie (x) = 0 (12)

− κeff−→∇xφe − κ
eff
D

−→
∇xln ce =

I

A
. (13)
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Kinetics: The above PDE’s are coupled by the Butler-Volmer

equation describing the reaction current at the solid/electrolyte

interface:

jLi (x) = asj0

[
exp

(
αaF

RT
η

)
− exp

(
−
αcF

RT
η

) ]
(14)

where αa and αc are the anodic and cathodic transfer coeffi-

cients of electrode reaction, R the universal gas constant, T the

absolute temperature in Kelvin, k is the kinetic rate constant

and j0 is the exchange current density. The overpotential η is

η = φs − φe − U (cs,e) . (15)

The equilibrium (open circuit) voltage U (cs,e) is evaluated as

a non linear empirical function [24] of the surface stoichiom-

etry θ.

θ− (x) =
cs,e−

canodes,max

; θ+ (x) =
cs,e+

ccathodes,max

. (16)

For readability’s sake, the above equations do not explicitly

mention the temperature dependency. In reality, the exchange

current density i0, the diffusion coefficient in the solid phase

Ds, the diffusion coefficient in the electrolyte phase De

and the electrolyte ionic conductivity K all depend on the

temperature according to the Arrhenius equation:

Ψ(T ) = Ψref

[
EΨ

act

R

(
1

Tref

−
1

T

)]

where Ψ is the generic parameter taken into account, Ψref is

the value of the parameter at the reference temperature Tref =
25 ◦C, R is the universal gas constant, EΨ

act is the activation

energy of the physiochemical property.

Terminal voltage: The cell potential is given by,

V = φs (x = L)− φs (x = 0)−
Rf

A
I (17)

where Rf is the film resistance on the electrodes surface.

B. Thermal dynamics

In deriving the thermal model, we assume that the tem-

perature gradient along the axial direction y is negligible; as a

consequence, we can use the 1D heat conduction in a cylinder:

ρcp
∂T

∂t
= kt

∂2T

∂2rc
+

kt

rc
∂T

∂rc
+Q (18)

with boundary conditions:

∂T

∂rc

∣∣∣∣
rc=0

= 0,
∂T

∂rc

∣∣∣∣
rc=Rc

= −
h

kt
(T − T∞). (19)

In the above equation, T∞ is the environment temperature, kt
is the thermal conductivity, ρ is the density, h is the convection

heat transfer coefficient, cp is the specific heat capacity, rc

and Rc are the radial direction and the radius of the cylinder.

Considering a heterogeneous cylinder, the heat capacity Cp is

calculated as proposed in [29]:

Cp = ρcp =
∑

i,k

δiεk,iρk,icp,k,i

L
(20)

where k indicates the phase (solid or electrolyte) and i the

component (negative electrode, separator, positive electrode).

Furthermore, δi is the thickness of the i-th component and

εk is the volume fraction of the k-th phase in the i-th

component. The volumetric heat generation rate, Q, is the sum

of three terms: the volumetric reaction heat Qj , the volumetric

ohmic heat Qo, the volumetric heat generated due to contact

resistance Qf :

Qj =
1

hc

∫ L

0

jLiη dx, Qf =
Rf

hc
ĩ2,

Qo =
1

hc

∫ L

0

σeff

(
∂φs

∂x

)2

+ keff
(
∂φe

∂x

)2

+

+ k
eff
D

(
∂ln(ce)

∂x

)(
∂φe

∂x

)
dx.

In the above expressions, hc is the height of the cylinder

and ĩ is the specific current density. Note the dependency

on electrochemical variables, which determines the coupling

between the two domains (thermal and electrochemical).

III. DISCRETIZATION APPROACH

Many techniques to solve the above partial differential

equations exist. Here, we propose the use of a finite dif-

ference approach. In a cylindrical cell, the electrochemical

and the thermal spatial distributions develop in two different

directions. The electrochemical equations have x and r as

the main geometrical direction whereas the thermal PDE

develops over the cell radius rc. As a consequence, we cannot

employ a single discretization scheme. We will thus discuss the

electrochemical equation discretization first, then the thermal

equation and finally the coupling.

A. Electrochemical dynamics

Figure 2 graphically describes the discretization approach.

The method assumes that the positive and negative electrodes

consist of a series of spherical active material particles, each

occupying one slice of the discretization along x with step

∆x. The second discretization axis is the radial dimension r

Fig. 2. Discretization of Li-ion cell along x and r dimensions

of each spherical active material particle. This discretization

step is ∆r. Nr, Nn, Ns and Np are respectively the number
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Fig. 3. Electrochemical model equations and their discretization.

of finite elements of the sphere, of the negative electrode, of

the separator and of the positive electrode discretization. Each

discretized region has a lumped electrolyte phase Li+ concen-

tration ce and electrolyte phase potential φe (named csep and

φsep in the separator). Each sphere has a lumped solid phase

potential φs and a volumetric rate of electrochemical reaction,

jLi, while the solid phase Li concentration is distributed along

r. The currents, is and ie, exhibit a gradient along x.

The discretization of the equations that govern the electro-

chemical processes is summarized in Figure 3

The model has (Nr + 1)Np + (Nr + 1)Nn +Ns dynamic

equations, coupled by jLi
k through a non-linear algebraic

system.

B. Thermal dynamics

The thermal dynamics are discretized with a finite difference

method along the radial direction. The cell is is divided in a

number (Nc) of concentrical cylindrical cells with ∆rc step,

determined according to a constant volume approach. The

discretization of (18) results in:

ρcpṪz = kt

[
Tz−1 − 2Tz + Tz+1

(∆rcz)
2

]
+

kt

rcz

[
Tz+1 − Tz

∆rcz

]
+Qz

where Tz , rz , and Qz are respectively the temperature, the

radius and the heat generation rate of the z-th element. The

term ∆rz is defined as:

∆rcz = rcz − rcz−1

where:

rc0 = 0, rcNc
= Rc

with boundary conditions

T1 − T0 = 0,
TNc+1 − TNc

∆rcNc

= −
h

kt
(TNc

− T∞).

C. Coupling

The two discretization approaches need to be mapped one

onto the others. Cylindrical cells are obtained by winding up

a thin sandwiched sheet in a cylinder (Figure 1). The Li-ion

cell is thus viewed as Nc subcells in parallel where each

subcell is described by an electrochemical set of equations

and characterized by its own temperature. The thermal model

describes the heat diffusion through the different subcells.

The coupling is determined by the Arrhenius equation. The

discretized heat generation rate Qz of the z-th subcell is:

Qz = Qj,z +Qo,z +Qf,z

Qj,z =
1

hc

∑

i

jLi
i,zηi,z∆x

Qo,z =
1

hc

∑

i

[
σeff

(
φs,i+1,z − φs,i,z

∆x

)2

∆x

]
+

+
1

hc

∑

i

[
keff

(
φe,i+1,z − φe,i,z

∆x

)2

∆x

]
+

+
1

hc

∑

i

[
k
eff
D

(
ln(ce,i+1,z)− ln(ce,i,z)

∆x

)

(
φe,i+1,z − φe,i,z

∆x

)
∆x

]

Qf,z =
Rf

hcA2
z

(
Îz

)2

The term Îz represents the input current of the z-th subcell.

The parallel connection of the subcells impose that:

I =
∑

z=1...Nc

Îz (21)

The model has Nc [(Nr + 1)(Nn +Np) +Ns] ODE’s, that

are coupled by the Butler-Volmer equation in groups of

[(Nr + 1)(Nn +Np) +Ns] and a set of Nc − 1 constraint-

type-equations:

Vz+1 − Vz = 0 with z ∈ [1, Nc − 1] . (22)

The coupling of the impedance-like causality of the P2D

model with these constraints is not trivial. The following

section introduces a numerical efficient integration scheme to

treat the system.

Fig. 4. Li-ion cell as spatially distributed string interconnected system.
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IV. INTEGRATION SCHEME

The proposed integration scheme stems from considering

the discretized system as a Spatially Interconnected System.

The cells represent a series of dynamical systems that com-

municate through interface variables. Figure 4 depicts this.

The communication happens on different scales: each element

of the electrochemical discretization communicates with the

adjacent ones and each string of cell is influenced by the other

strings through the thermal dynamics.

A. Spatially Interconnected Systems

To better understand the approach, let us consider a single

string of Figure 4. A string of Ntot dynamical subsystems of

the form:

ẋk = fk (xk, v
p
k, v

m
k , uk)

v
p
k−1 = g

p
k (xk, uk, v

p
k, v

m
k )

vmk+1 = gmk (xk, uk, v
p
k, v

m
k )

yk = hk (xk, v
p
k, v

m
k , uk)

(23)

takes the name of Spatially Distributed String Interconnected

System [28]. Such systems can be either strictly spatially

proper or not depending on whether g
p
k and gmk are dependent

on vmk and v
p
k, respectively. Let us start considering a strictly

spatially proper system. In this case, the interconnecting

variables can be easily eliminated through a process called

lifting; this yields a NtotNsub order system (Nsub being the

order of the subsystem). The computational complexity of

integrating the complete system with standard ODE solvers

grows as O
(
(NtotNsub)

3
)
.

On the other hand, preserving the distributed nature of the

system and simulating each subsystem independently yields

an improvement of computational efficiency. Preserving the

distributed nature requires sampling the interconnecting vari-

ables at frequency h. The integration routine simulates the

Ntot subsystems independently at a shorter integration step

and computes the interface variables at a lower sampling

rate. This approximation yields a computational complexity

to O
(
NtotN

3
sub

)
or even O

(
N3

sub

)
- if a parallel architecture

with Ntot cores is available. Note that the under sampling of

the interconnecting variables may introduce errors. The entity

of the errors depend on how much the internal dynamics is

coupled to the dynamics of the interconnecting variables.

In the case of non spatially strictly proper systems the

situation is more complex. If g
p
k or gmk are dependent on vmk

and v
p
k , it is, in general, not possible to write the subsystems

in explicit form. The case of linear dependency represents a

special case for which we propose an efficient method. Assume

that

ẋk = fk (xk, v
p
k, v

m
k , uk)

v
p
k−1 = gk1 (xk, uk) +W

p
k v

p
k + Zm

k vmk
vmk+1 = gk2 (xk, uk) + Z

p
kv

p
k +Wm

k vmk
yk = hk (xk, v

p
k, v

m
k , uk)

(24)

then the interconnecting equations can be arranged in a linear

system of the form Ev = b(x, u) where,

v =




v
p
1

vm2
v
p
2
...

vmN−1

v
p
N−1

vmN




b =




g12 (x1, u1)
g21 (x2, u2)
g22 (x2, u2)

...

g(N−1)1

(
x(N−1), u(N−1)

)

g(N−1)2

(
x(N−1), u(N−1)

)

gN1 (xN , uN )




.

(25)

The spatially distributed nature of the system makes E a

Sequentially Semi Separable matrix [28] encoded as:

E = SSS (Ls,Ms, Ns, Os, Ps, Qs, Rs) (26)

where,

Ls =

[
I

0

]
∀s ∈ {2, 3, · · · , N − 1}, LN = I

Ms = 0 ∀s ∈ {2, 3, · · · , N − 1}

N1 = I, Ns =
[
0 I

]
∀s ∈ {2, 3, · · · , N − 1}

O1 = −Z
p
1 , ON = −Zm

N

Os =

[
−Zm

s −W p
s

−Wm
s −Zp

s

]
∀s ∈ {2, 3, · · · , N − 1},

P1 = I, Ps =

[
0
I

]
∀s ∈ {2, 3, · · · , N − 1}

Qs = 0 ∀s ∈ {2, 3, · · · , N − 1}

Rs =
[
I 0

]
∀s ∈ {2, 3, · · · , N − 1}, RN = I

(27)

Semi Separable matrices define an algebra for which efficient

algorithms exist. In particular, the system of equations Ev =
b(x, u) is solvable in O(Ntot). If E is invertible the system

is well posed [30] and the interconnecting variables can be

computed in a centralized block before the integration of each

subsystem.

The same approach can still be applied if the other strings

are added to the picture. The constraints imposed by the con-

nection between strings can be added to E. The augmentation

of E may change its structure; we will show in what follows

that the constraints that arise from the parallel connection can

still be managed efficiently.

In the remainder of the section, we will first show that

the single subcell can be cast into a string of interconnected

systems and subsequently we will address the inter-string

constraints.

B. Spatially Interconnected Li-ion Subcell Model

Let us consider the generic subcell of Figure 4. Figure 5

shows the kth finite element with its interfacing variables.

The state equations for the subsystems are the Nr dynamic

equations for the solid and one for the electrolyte diffusion.
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Fig. 5. A single discretized part of positive / negative electrode intercon-
nected with neighboring blocks shown as dotted

They depend on jLi
k . By eliminating φsk from equation

(14) using equation (5) and then eliminating isk using the

discretized version of equation (6) we get jLi
k as an implicit

function of states, inputs but also jLi
k itself. Its linearization

brings yields the explicit form (as also done in [24]):

jLi
k =

as

Rct

[
φsk − φek − U

(
cs(k,Nr)

)]
(28)

where,

Rct =
RT

j0F (αa + αc)

Substituting the linearized jLi
k in the dynamic equations, we

obtain the following state equations,

ẋk =




−α1 α1 0 ... 0
Ds

∆r2
−α2 α2 ... 0

... ... ... ... ...

0 ... Ds

∆r2
− Ds

∆r2
0

0 ... 0 0 −
2Deff

e

ǫe∆x2



xk

+




0
0
...

−Ω U (xk (Nr))
−γ U (xk (Nr))



+




0 0 0
0 0 0
... ...

Ω 0 0

γ 0
Deff

e

ǫe∆x2



v
p
k

+




0 0 0
0 0 0
... ...

Ω ∆x
σeff −Ω 0

γ ∆x
σeff −γ

Deff
e

ǫe∆x2



vmk

(29)

where

Ω = − 1
βRct

(
2

Nr∆rF
+ 1

∆rF

)
γ = as

βRct

(
1−t0+
F

)

β = 1 + ∆x2

σeff
as

Rct
αi =

(
2Ds

i∆r
+ Ds

∆r2

) (30)

and, defining some constants

M1 = ∆xas

βRct
M2 = ∆x2

σeff
as

βRct

M3 = ∆x
σeff M4 = − ∆x

κeff KdK =
κ
eff

D

κeff ,
(31)

the output relation equations can be derived as

v
p
k−1 =




M2U (xk (Nr))
M1U (xk (Nr))
xk (Nr + 1)


+




(1−M2) 0 0
−M1 1 0
0 0 0


 v

p
k

+




M3 (1−M2) M2 0
−M2 M1 0
0 0 0


 vmk

(32)

vmk+1 =




M1U (xk (Nr))
KdK ln (xk (Nr + 1))

xk (Nr + 1)




+




−M1 0 0
0 M4 0
0 0 0


 v

p
k +




− (M2 − 1) M1 0
0 1 0
0 0 0


 vmk

+




0
−KdK ln (vpk (Nr))

0




(33)

The separator and the interfaces between the terminals and

the electrodes and the electrodes are amenable to the same

procedure. This results in a system in the form of (23).

From the analysis of the above system two conclusions are

due: (1) the interconnecting output variables are only weakly

coupled to the Li diffusion in the active material; in fact

only the last element xk(Nr) appears in the above equations.

(2) Although the subsystems are not directly in the linear

in interconnecting variables form, the only nonlinear term

in the equation depends on v
p
k (Nr) which is a state of the

neighboring block and is thus available for solving the system

Ev = b.

Following the above procedure, one gets to Nc independent

set of equations; each string has as inputs the current flowing

in that subcell (Îz) and the temperature, while its output is

the terminal voltage. At this stage the subcell current is still

undermined. Recall now that the Nc cells are connected in

parallel, this imposes the constraints (21) and (22). Including

these constraints in the above formulation, one gets:



Etot 0Nc×Nc

Cv,tot CI,tot

01×Nc
11×Nc



[

vtot
Itot

]
=




btot
0Nc×1

I


 (34)

where the unknown vtot and Itot are respectively the stacked

vector of the v for each subcell and stacked vector of the

subcell currents. Similarly, btot is the stacked vector of all

b. Etot is the block-diagonal matrix of E defined above;

[Cv,tot CI,tot] is the (Nc − 1) × 2Nc matrix that selects the

potential of the first element of the negative and the last

element of the positive electrode and the current for pairs of

subcell according to (17) to impose the constraint (22). The

bottom row of (34) translates (21) in matrix form.

Inspection of (34) reveals that the addition of the parallel

constraints breaks the SSS structure; however one notice that

the equations are in the form of a block triangular system

of equations. This means that at each sampling time, the
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SSS systems of equation of the form Ev = b can be

solved independently as in the case of the single subcell and

subsequently the subcell currents can be computed solving the

bottom half of the system.

We thus define the integration routine summarized in Figure

6. At each integration step, the state dependent parameters are

Fig. 6. Li-ion cell simulator - algorithm

updated according to the previously computed value of the

states; these values are entered in the Ez matrices and the bz
vectors. The SSS algebra is used to solve for the intercon-

nected variables v at a sampling step h. The interconnecting

variables v along with the other variables are used to compute

the current through each subcell. The current through each

subcell along with the electrochemical variable available in v

drives the discretized thermal dynamics. After that, all the sub-

systems of each subcell can be simulated using an ODE solver

of choice keeping the interconnecting variables and subcell

temperature constant.

V. MODEL ANALYSIS AND RESULTS

This section analyzes the simulation results of the proposed

model. We focus on mainly three aspects: tuning of the

discretization, comparison with a complete CFD model and

computational efficiency analysis. The reference cell model is

the one in [22], [24].

A. Model Tuning

It is useful to discuss the choice of the value of some

discretization variables. In the sake of clarity and conciseness,

we focus on two parameters: the choice of Nr and that of Nc.

Figure 7 shows the terminal voltage and solid phase sur-

face concentration cs,e for different levels of discretization

Nr. In the simulation, a current of 10 C is drawn for 20s

from an initial state of charge of 100%. In the simulation

Nn = Np = 5, Ns = 3 and h = 0.05s. The second subplot of

7 shows the surface concentration at time 2 s. The dimension

x is normalized with respect to the total length of the cell

L. The figure shows that increasing Nr has an impact on the

terminal voltage response; however, using Nr greater than 50

does not seem to have any benefit.

Subsequently, we analyze the choice of the thermal model

discretization. In order, to more realistically excite the thermal

dynamics, we simulate the cell under conditions similar to the

ones encountered by a cell in a Hybrid Electric Vehicle battery

Fig. 7. Effect of different levels of discretization of the spherical active
material particle.

pack. We simulate 4 repetitions of the US06 driving cycle,

scaling the battery pack so that the cell reaches maximum

current of 25 C, and a mean current of 1 C. The initial

temperature is T∞ = 25 ◦C. The heat transfer coefficient h

is set to the value of 60 W
m2K

. Figure 8 plots two indexes that

summarizes the thermal behavior:

• The index ∆T quantifies the difference between the core

and the surface:

∆T = T1 − TNc
.

• The index δT measures the difference between the cell

average temperature and the environment:

δT = Tbulk − T∞

where the average temperature is:

Tbulk =

∑Nc

z=1 V
s
z · Tz∑Nc

z=1 V
s
z

with V s
z represents the volume of the z-th subcell.
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Fig. 8. Sensitivity analysis with respect to Nc

The indexes show that the temperature gradient is not negli-

gible. However, Nc = 6 is enough to accurately describe the

temperature dynamics. From now on, we will refer to Nc = 6.
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B. Model Comparison

The proposed integration scheme requires some assumptions

and simplifications. In order to assess the effects of these

simplifications, we compare the outputs of our model against

an experimentally validated CFD model [15]. The choice of

using a CFD model allows for a more accurate comparison

of the internal variables which are not easily measurable. The

model validation details three main aspects terminal voltage,

concentration gradients along x, and response to transient

currents.

Figure 9 plots the results of a constant current discharge

experiment performed from a fully charged battery with

three current levels. We consider two types of simulations,

the first one (solid line) neglects the temperature dynamics

(considering all subcells at the same temperature). The second

type of simulation considers the entire model as described.

The plot shows the terminal voltage and the temperature
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Fig. 9. Terminal voltage prediction of model at different C-rates: (-)
Discretized model, (o) CFD mode.

dynamics for each of the Nc subcells. The terminal voltage is

plotted with respect to the Depth of Discharge (DoD), whereas

the temperature is time-based. From figure, a numbers of

conclusions are due:

• The model is accurate in the entire DoD range for 1C;

for higher currents the accuracy range is reduced toward

the end of discharge. The error at higher currents is due

to the nonlinearity in the terminal voltage characteristic

U (cs,e). Because of that small errors in cs,e result in

large errors in voltage.

• In the case of 1 C, the temperature dynamics do not play

an important role. 1 C is not enough to heat the battery.

As the C rate increases we see that the temperature

dynamics considerably affects the discharge dynamics.

• For the higher C rates, a temperature gradient builds in

the cell. At the end of the discharge the temperature

difference between the core and the surface of the cell

gets to 20 degrees.

One of the advantages of using an electrochemical model

resides in the possibility of accurately modeling the evolution

of the species gradients. Figure 10 compares the proposed

model and the CFD model. The figure provides a snapshot

at 20 seconds during a constant current (5C) discharge of

the electrochemical reaction at the solid/ electrolyte interface

jLi, the surface concentration and the Li concentration in the

electrolyte as a function of the position. The model correctly
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Fig. 10. Gradients along the x dimension. The continuous line is the
CFD model, whereas the circles represent the model.

describes the gradients along the x direction.

The final comparison with the CFD model is carried out

in terms of dynamic response. Figure 11 plots the terminal

voltage and the temperature evolution for a test consisting of

a series of current steps. Also in this case, the model correctly
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Fig. 11. Results of the transient current simulation: current, voltage and
temperature.

captures the voltage dynamics. Note that despite the extremely

high currents, this short test does not develop an appreciable

temperature gradient.

Figure 12 illustrates the advantages of a coupled bi-

directional and spatially distributed thermal model. It plots

the comparison of the surface concentration dynamics in the

first element of the negative electrode (top subplot) and in

the last element of the positive electrode (bottom subplot)
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Fig. 12. Comparison of the concentrations dynamics.

for the lumped thermal model (Nc = 1 - dashed line) and

for the distributed model (Nc = 6 - solid line); the darkest

solid line refers to the inner subcell, while the lighter solid

line refers to the outer subcell. The figure plots a snapshot of

the state of the cell during the US06 cycle. The temperature

considerably affects the intercalation dynamics, therefore, if

the internal temperature gradient is not negligible, the lithium

concentration is not uniform along the radial direction rc.

C. Complexity Analysis

The use of the spatially interconnected framework enables

two computational advantages: 1) the coupling equations can

be solved in linear complexity with respect to the discretization

along x, and 2) the integration is amenable to a high degree

of parallelization. In fact, recalling Figure 6, the integration of

each cell can be run in parallel. Figure 13 shows the simulation

time with different discretization levels of positive electrode,

negative electrode and separator keeping the discretization of

spherical active material particle constant and the computation

time for varying radial discretizations. The figure plots the
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Fig. 13. Simulation time per step for different discretization levels

simulation time ratio (the ratio between the time it takes

to simulate a given amount of time and that time) for an

implementation of the model that does not exploit the spatially

interconnected framework and the proposed approach. The

figure deserves a few comments:

• increasing the discretization along x causes a linear in-

crease in the simulation time. Whereas, in the benchmark

approach, the increase in computation time is more than

linear.

• For low level of discretization, the proposed method

comes with an overhead that makes the benchmark ap-

proach more efficient.

• When the radial discretization increases, the simulation

time does not grow linearly as the method does not

exploit any structure in the r dimension.

The above analysis indicates that a discretization of Nr = 50,

Nn = 5, Np = 5 and Ns = 3, Nc = 6 guarantees real time

simulation on the adopted platform1.

VI. CONCLUSIONS

This work presents a control-oriented electrochemical model

of a Li-ion cell that accounts for the thermal dynamics in

a coupled way: the electrochemical reaction determines the

thermal dynamics and vice versa. After having described the

equation, we spatially discretize the equation using a finite

difference method. Following this approach, the cell equations

take the form of a spatially interconnected system; we show

that, exploiting minor approximations, the complexity of in-

tegrating the equation can be considerably reduced. The pro-

posed modeling approach, relying only on two approximations

(linearization of the Butler-Volmer Kinetics and the holding of

the interconnecting variables), has several advantages:

• It provides an efficient simulator that captures the mass

diffusion dynamics of the Li-ion cell and the thermal

gradients of the cell battery;

• it avoids any iterative solution of nonlinear equations,

thus improving efficiency and avoiding possible non

convergent behavior;

• when linearized, the state space model assumes an SSS

structure that can further exploited in the design and

implementation of control systems [28], [31], [32];

• it is amenable to parallelization, thus improving even

further the computational efficiency.

The second part of the paper analyzes the model properties,

focusing on the effect of the approximations, the choice of

the discretization and the effect of the coupled dynamics.

In conclusion, the approximation does not greatly affect the

accuracy of the model, while providing a useful tool for

Battery Management System design.
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